Rejection and fate of trace organic compounds (TrOCs) during membrane distillation

نویسندگان

  • Kaushalya C. Wijekoon
  • Faisal I. Hai
  • Jinguo Kang
  • William E. Price
  • Tzahi Y. Cath
  • Long D. Nghiem
چکیده

In this study, we examined the feasibility of membrane distillation (MD) for removing trace organic compounds (TrOCs) during water and wastewater treatment. A set of 29 compounds was selected to represent major TrOC groups, including pharmaceuticals, steroid hormones, phytoestrogens, UV-filters, industrial chemicals, and pesticides that occur ubiquitously in municipal wastewater. Results reported here suggest that rejection and fate and transport of TrOCs during MD are governed by their volatility and, to a lesser extent, hydrophobicity. All TrOCs with pKH49 (which can be classified as non-volatile) were well removed by MD. Among the 29 TrOCs investigated in this study, three compounds (i.e. 4-tertoctylphenol, 4-tert-butylphenol and benzophenone) possess moderate volatility (pKHo9) and therefore had the lowest rejection efficiencies of 54%, 73% and 66%, respectively. The results suggest that the rejection of TrOCs with pKHo9 may be governed by the interplay between their hydrophobicity and volatility. In addition, the fate and transport of the TrOCs during the MD process was also investigated. Hydrophilic TrOCs having negligible volatility were concentrated in the feed, while hydrophobic compounds with moderate volatility were substantially lost due to evaporation or adsorption. When MD treatment was integrated with a thermophilic membrane bioreactor (MBR), near complete removal (495%) of all 29 TrOCs investigated in this study was achieved despite their diverse physicochemical properties (i.e. hydrophobicity, persistency and volatility). The results suggest that MD could be a promising post-treatment to be used in conjunction with thermophilic MBR for TrOC removal. Crown Copyright & 2013 Published by Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel membrane distillation-thermophilic bioreactor system: biological stability and trace organic compound removal.

The removal of trace organic compounds (TrOCs) by a novel membrane distillation-thermophilic bioreactor (MDBR) system was examined. Salinity build-up and the thermophilic conditions to some extent adversely impacted the performance of the bioreactor, particularly the removal of total nitrogen and recalcitrant TrOCs. While most TrOCs were well removed by the thermophilic bioreactor, compounds co...

متن کامل

Removal of trace organic contaminants by the forward osmosis process

The rejection of trace organic contaminants (TrOCs) by an osmotically driven membrane filtration process was investigated. A set of 40 compounds representing major groups of TrOCs of concern was selected for this study. The rejection of the TrOCs by a commercial cellulose acetate asymmetric forward osmosis membrane, as well as a ''tight'' commercial thin-film composite nanofiltration (NF) membr...

متن کامل

A forward osmosis-membrane distillation hybrid process for direct sewer mining: system performance and limitations.

This study demonstrates the robustness and treatment capacity of a forward osmosis (FO)-membrane distillation (MD) hybrid system for small-scale decentralized sewer mining. A stable water flux was realized using a laboratory-scale FO-MD hybrid system operating continuously with raw sewage as the feed at water recovery up to 80%. The hybrid system also showed an excellent capacity for the remova...

متن کامل

Degradation of Trace Organic Contaminants by a Membrane Distillation—Enzymatic Bioreactor

A high retention enzymatic bioreactor was developed by coupling membrane distillation with an enzymatic bioreactor (MD-EMBR) to investigate the degradation of 13 phenolic and 17 non-phenolic trace organic contaminants (TrOCs). TrOCs were effectively retained (90–99%) by the MD membrane. Furthermore, significant laccase-catalyzed degradation (80–99%) was achieved for 10 phenolic and 3 non-phenol...

متن کامل

Development of a predictive framework to assess the removal of trace organic chemicals by anaerobic membrane bioreactor.

This study aims to develop a predictive framework to assess the removal and fate of trace organic chemicals (TrOCs) during wastewater treatment by anaerobic membrane bioreactor (AnMBR). The fate of 27 TrOCs in both the liquid and sludge phases during AnMBR treatment was systematically investigated. The results demonstrate a relationship between hydrophobicity and specific molecular features of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014